5 # Copyright (c) 1999 Dirk Koopman G1TLH
7 # as fixed by Steve Franke K9AN
12 my ($self, $line) = @_;
13 my @f = split /\s+/, $line;
15 my $prefix = uc shift @f;
16 return (1, $self->msg('e4')) unless $prefix;
23 $hr2 = $f if $f =~ /^\d+$/;
26 $hr2 = 2 if !$hr2 || $hr2 < 2;
27 $hr2 = 24 if $hr2 > 24;
32 my ($pre, $a) = Prefix::extract($prefix);
34 # calc bearings and distance
35 my ($d, $b1, $b2); # distance, bearing from TX and from RX
36 my ($lat2, $lon2); # lats and longs in radians
37 my $lat1 = $self->user->lat;
38 my $lon1 = $self->user->long;
39 if (!$lon1 && !$lat1) {
40 push @out, $self->msg('heade1');
41 $lat1 = $main::mylatitude;
42 $lon1 = $main::mylongitude;
46 ($b1, $d) = DXBearing::bdist($lat1, $lon1, $lat2, $lon2);
47 ($b2, undef) = DXBearing::bdist($lat2, $lon2, $lat1, $lon1);
49 # convert stuff into radians
62 $b1 -= $pi2 if ($b1 >= $pi2);
64 $b2 -= $pi2 if ($b2 >= $pi2);
68 my ($hr1, $day, $month) = (gmtime($main::systime))[2,3,4];
70 my $flux = Geomag::sfi;
71 my $ssn = Minimuf::spots($flux);
73 my $theta; # path angle (rad)
75 $theta=$theta+2.*$pi if( $theta <= -$pi);
76 $theta=$theta-2.*$pi if( $theta >= $pi);
78 my ($lats, $lons); # subsolar coordinates (rad)
79 my $dB1 = 20; # transmitter output power (dBW)
81 my $delay; # path delay (ms)
82 my $psi; # sun zenith angle (rad)
83 my ($ftemp, $gtemp); # my $temps
84 my ($i, $j, $h, $n); # int temps
85 my $offset; # offset for local time (hours)
86 my $fcF; # F-layer critical frequency (MHz)
87 my $phiF; # F-layer angle of incidence (rad)
88 my $hop; # number of ray hops
89 my $beta1; # elevation angle (rad)
90 my $dhop; # hop great-circle distance (rad)
91 my $height; # height of F layer (km)
92 my $time; # time of day (hour)
93 my $rsens = -123; # RX sensitivity
96 my @freq = qw(1.8 3.5 7.0 10.1 14.0 18.1 21.0 24.9 28.0 50.0); # working frequencies (MHz)
97 my $nfreq = @freq; # number of frequencies
98 my @mufE; # maximum E-layer MUF (MHz)
99 my @mufF; # minimum F-layer MUF (MHz)
100 my @absorp; # ionospheric absorption coefficient
101 my @dB2; # receive power (dBm)
102 my @path; # path length (km)
103 my @beta; # elevation angle (rad)
104 my @daynight; # path flags
106 # calculate hops, elevation angle, F-layer incidence, delay.
107 $hop = int ($d / (2 * acos($R / ($R + $hF))));
109 while ($beta1 < $MINBETA) {
111 $dhop = $d / ($hop * 2);
112 $beta1 = atan((cos($dhop) - $R / ($R + $hF)) / sin($dhop));
114 $ftemp = $R * cos($beta1) / ($R + $hF);
115 $phiF = atan($ftemp / sqrt(1 - $ftemp * $ftemp));
116 $delay = ((2 * $hop * sin($dhop) * ($R + $hF)) / cos($beta1) / $VOFL) * 1e6;
118 # print summary of data so far
119 push @out, sprintf("RxSens: $rsens dBM SFI:%4.0lf R:%4.0lf Month: $month Day: $day", $flux, $ssn);
120 push @out, sprintf("Power : %3.0f dBW Distance:%6.0f km Delay:%5.1f ms", $dB1, $d * $R, $delay);
121 push @out, sprintf("Location Lat / Long Azim");
122 push @out, sprintf("%-30.30s %-18s %3.0f", $main::myqth, DXBearing::lltos($lat1*$r2d, -$lon1*$r2d), $b1 * $r2d);
123 push @out, sprintf("%-30.30s %-18s %3.0f", $a->name, DXBearing::lltos($lat2*$r2d, -$lon2*$r2d), $b2 * $r2d);
124 my $head = "UT LT MUF Zen";
125 for ($i = 0; $i < $nfreq; $i++) {
126 $head .= sprintf "%5.1f", $freq[$i];
132 # Hour loop: This loop determines the min-hop path and next two
133 # higher-hop paths. It selects the most likely path for each
134 # frequency and calculates the receive power. The F-layer
135 # critical frequency is computed directly from MINIMUF 3.5 and
138 $offset = int ($lon2 * 24. / $pi2);
139 for ($hour = $hr1; $hour < $hr2+$hr1; $hour++) {
144 $time = $dh - $offset;
145 $time += 24 if ($time < 0);
146 $time -= 24 if ($time >= 24);
147 my $out = sprintf("%2.0f %2.0f", $dh, $time);
148 $ftemp = Minimuf::minimuf($flux, $month, $day, $dh, $lat1, $lon1, $lat2, $lon2);
149 $fcF = $ftemp * cos($phiF);
151 # Calculate subsolar coordinates.
152 $ftemp = ($month - 1) * 365.25 / 12. + $day - 80.;
153 $lats = 23.5 * $d2r * sin($ftemp / 365.25 * $pi2);
154 $lons = ($dh * 15. - 180.) * $d2r;
156 # Path loop: This loop determines the geometry of the
157 # min-hop path and the next two higher-hop paths. It
158 # calculates the minimum F-layer MUF, maximum E-layer
159 # MUF and ionospheric absorption factor for each
161 for ($h = $hop; $h < $hop + 3; $h++) {
163 # We assume the F layer height increases during
164 # the day and decreases at night, as determined
165 # at the midpoint of the path.
167 $psi = Minimuf::zenith($d / 2, $lat1, $lon1, $b1, $theta, $lats, $lons);
173 $dhop = $d / ($h * 2.);
174 $beta[$h] = atan((cos($dhop) - $R / ($R + $height)) / sin($dhop));
175 $path[$h] = 2 * $h * sin($dhop) * ($R + $height) / cos($beta[$h]);
176 Minimuf::ion($h, $d, $fcF, $ssn, $lat1, $lon1, $b1, $theta, $lats, $lons, \@daynight, \@mufE, \@mufF, \@absorp);
179 # Display one line for this hour.
180 $out .= sprintf("%5.1f%4.0f ", $mufF[$hop], 90 - $psi * $r2d);
182 for ($i = 0; $i < $nfreq; $i++) {
183 $n = Minimuf::pathloss($hop, $freq[$i], 20, $rsens, 0, \@daynight, \@beta, \@path, \@mufF, \@mufE, \@absorp, \@dB2);
184 my $s = Minimuf::ds($n, $rsens, \@dB2, \@daynight);